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Abstract-Stress intensity factors for interfacial cracks between two dissimilar orthotropic materials
were considered. Due to the oscillatory characteristics of stresses and displacements near the crack
tip, individual strain energy release rates no longer exist. Instead, the individual strain energy release
rates corresponding to a finite crack extension were obtained in terms of the stress intensity factors
and the assumed crack extension ~a. The finite element methods in conjunction with the crack
closure technique were used to calculate these finite extension strain energy release rates from which
accurate stress intensity factors were obtained. An alternative method based on crack surface
displacement ratio was also discussed. Non-oscillatory (~a-independent) Mode I and Mode II
"strain energy release rates" were also proposed to provide an alternate measure of fracture mode
mixity or to be used as a fracture criterion for interfacial cracks. © 1998 Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

Interfacial cracking is a common failure mode in bimaterial media. Examples include
debonding of adhesive joints, delamination in advanced composite materials and their
laminates, and grain boundary fractures in polycrystals resulting from precipitation or
segregation of impurities. To predict the growth of an interfacial crack, the neartip stress
and displacement fields must be calculated.

Since Williams (1959) discovered the oscillatory neartip stress behavior for a traction
free interfacial crack between two dissimilar isotropic materials, the interface crack problem
has been discussed by many authors such as England (1965), Rice and Sih (1965), Malysev
and Salganik (1965), Sun and Jih (1987), Hutchinson et al. (1987), Rice (1988) for isotropic
media; and Gotoh (1967), Clements (1971), Willis (1971), Wang and Choi (l983a, 1983b),
Ting (1986), Bassani and Qu (1989), Sun and Manoharan (1989), Wu (1990), Gao et al.
(1992), and Hwu (l993a, 1993b) for anisotropic media. The oscillatory stress and dis
placement fields are physically inadmissible due to the wrinkle and over-lap zone near the
end of the crack (England, 1965). Under remote tensile loading, this zone is generally very
small compared to the crack length. However, it can be large for shear loading (see Rice,
1988; Comninou, 1978). Modifications to account for crack surface contact have been
suggested to resolve this dilemma by Comninou (1977). Rice (1988) argued for the validity
of oscillatory field solutions by proposing the so called small scale contact zone outside
which the oscillatory solution adequately describes the near-tip state. This was also con
firmed recently by Sun and Qian (l996a) through numerical comparison of the near-tip
solution of the oscillatory model and the contact model for interfacial cracks under remote
uniform tensile loading in isotropic media. The limitation of the loading condition in
isotropic media was also studied by Sun and Qian (1997) and given in terms of the phase
of the complex stress intensity factor.

Although the total strain energy release rate for interfacial cracks is well defined and
has been found explicitly in both isotropic and anisotropic media, the individual strain
energy release rates G] and Gn do not exist due to their oscillatory nature (see Sun and Jih,
1987; Raju et aI., 1988). However, for a finite extension !la, the individual strain energy
release rates exist and were used by Sun and Qian (1997) to calculate stress intensity factors
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Fig. 1. Interfacial crack between two dissimilar orthotropic materials having one plane of material
symmetry parallel to the Xl-X, plane.

for interfacial cracks in isotropic media and by Qian and Sun (1995, 1996b) for interfacial
cracks in composite laminates.

In the present study, the aforementioned approach is extended to general orthotropic
bimaterial media having one plane of material symmetry parallel to XI-X2, plane, see Fig. 1.
Owing to the transformation property of the Barnett-Lothe tensors (Barnett and Lothe,
1973) derived by Dongye and Ting (1989) for these particular bimaterial media, the
explicitly near-tip stresses and displacements are obtained from the solution by Hwu
(1993b). The crack closure integrals are evaluated for a finite crack extension, from which
the stress intensity factors are derived. The ratio of stress intensity factors can also be
evaluated alternatively from the crack surface displacements ratio. These stress intensity
ratios are used in conjunction with the total strain energy release rate to determine the
stress intensity factors. Non-oscillatory (~a-independent) strain energy release rates are
also proposed and their relations to finite extension strain energy release rates are presented.
The mode mixity is expressed in terms of either the phase of the complex stress intensity
factor or the ratio of the two non-oscillatory strain energy release rates. A center crack
lying between two dissimilar orthorhombic crystalline materials with different material
principal orientations under remote uniform tensile loading is selected in the numerical
study. Numerical results are presented to show the accuracy of this technique.

2. NEAR-TIP FIELD

Consider an interfacial crack located between two orthotropic media. Each medium is
considered as an orthotropic medium rotated with a e in the X 1-X2 plane, see Fig. 1. The
xraxis coincides with a material principal axis, and loading is independent of the xraxis,
resulting in a generalized plane strain deformation. The stress intensity factors associated
with an arbitrary distance f introduced by Wu (1990) are expressed by Hwu (l993a) as

(I)

where the angular brackets <<>>stand for a 3 x 3 diagonal matrix, S, (ex = 1,2,3) involve
the bimaterial constant, and A is the eigenvector matrix associated with the eigenvalue
problem as discussed in Hwu (l993a) (see Appendix). The stress intensity factors obtained
at one f can be converted to those at a different f. To be consistent with the definition of
stress intensity factor by Sun and Jih (1987) in isotropic media, we chose crack length 2a
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as the value of f throughout the paper, and stress intensity factor at other f can easily be
obtained through the following relation

(2)

The near-tip stresses ahead of the crack tip and relative crack surface displacements
have been derived by Hwu (1993) as

and

(
LlUll fi . jKII]2r _ (r/2a) "0
Llu2 = _(AT)-l A -I KIn \ ( (1 +2ie.) cosh(ne.) ) )
Llu3 Kill

(3)

(4)

respectively. In (4), the overbar stands for the conjugate of a complex number. It is seen
that the influence of material properties on near-tip stresses and displacement fields for the
interfacial crack are reflected through the oscillation index e. (IX = I, 2, 3) and eigenvector
matrix A, which are obtained in the standard eigenvalue problem given in (AI) with two
known 3 x 3 real matrices D and W or Barnett and Lothe tensors Sand L (Barnett and
Lothe, 1973) (see Appendix). The explicit expression for Sand L of orthotropic materials
have been shown by Dongye and Ting (1989) as

All other elements of Sand L are zero. In the above, C;j is the contracted notation for the
fourth order elastic constant tensor Cijks'

For an interfacial crack between two dissimilar orthotropic materials having one plane
of material symmetry parallel to the XI-X2 plane as illustrated in Fig. I, Dongye and Ting
(1989) showed the following transformation relations between the transformed S(O), L(O)
and S, Las

S(O) = n(o)snT(O)

L(O) = !l(O)LnT(O)

and the coordinate transformation matrix neLla) is given by

[

cos(O) sin(O) 0]
n(o) = - sin(O) cos(O) 0

o 0 I

(6)

and 0 is the angle of rotation of the orthotropy axes in the X I-X2 plane.
The D and W matrices can be obtained explicitly by substituting (6) into (A2). We

obtain
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~]

(7)

(8)

where the subscripts 1 and 2 on Sand L denote the upper and lower media, respectively,
and

2 L i • 2e+Li 2e
" II sm i 22 cos i

D II = L. ..
i~1 L'llL~2

D
22

= ±L
i
ll cos

2
e i + L~2 sin

2
e

i~ i L'll L'22

(9)

In eqn (9), el and e2 denote the rotation angles; and superscripts 1 and 2 on L ih L 22, and
Sl2 denote the upper and lower materials, respectively.

The oscillation index t, and eigenvector matrix A are given explicitly by

1 1+ {3
tl = t

2n
In I _ {3' t2 = - t, t3 = 0, (10)

[

(-iA sgn(W2i ) -D I2 )/)W::A

A= ~/y0.A

o

where

(iA sgn(W2d - D I2 )/)W::A

~/y0.A

o 11~J (11)

The sgn () stands for sign function. From (9), it is noted that matrix W is the invariant of
rotation e. Hence, for bimaterial media consisting of identical orthotropic solids with
different orientations on either side, no oscillation is present from (10), and the crack-tip
stress field has the standard square root singularity. This class of bimaterial interfacial
cracks has been studied in great detail by Bassani and Qu (1989). In the present study, we
consider bimaterial media consisting of two dissimilar orthotropic solids with arbitrary
rotations in the X I-X2 plane.

With the explicit expression of A and t, the near-tip stresses and crack surface relative
displacements in (3) and (4) can be stated explicitly in terms of stress intensity factors. The
near-tip stresses ahead of the crack tip are
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0"23 = ~KIII

y2nr

The near-tip relative crack displacements are

In (12)-(17), complex constants ~ and ~ are defined as

~=(1+2'; h ' ~=(r/2a)j"
18 cos n8
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(12)

(13)

(14)

(15)

(16)

(17)

It is seen from the above near-tip solutions that the in-plane and out-of-plane defor
mations are uncoupled, and only in-plane deformation possesses oscillatory behavior. Since
the oscillatory field is the major interest in our study, only in-plane problems are studied
he\"''e,.

3. FINITE EXTENSION STRAIN ENERGY RELEASE RATES

Due to the oscillatory nature, the individual Mode I and Mode II strain energy release
rates do not exist for interfacial cracks in isotropic media and anisotropic media. Instead,
the strain energy release rates for a finite crack extension !1a were introduced by Sun and
Qian (1997) for interfacial cracks in isotropic media and by Qian and Sun (1995, 1997) for
interfacial cracks in composite laminates to calculate stress intensity factors. We extend
this approacb to tbe interfacial cracks between two dissimilar orthotropic media baving a
plane of material symmetry coinciding parallel to the Xt-X2 plane.

Ifwe allow a finite crack extension!1a (and thus a finite crack closure length) in Irwin's
crack closure integrals, i.e.,

(18)

(19)

tl:ese integrals can be evaluated without ambiguity. Substituting the near-tip stresses and
displacements from equations (12), (0), (15), and (16) and (I8) and (I9), and using the
fcUowinlb inCelbral idenCiCies
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fAa ( X )(1/2)-iO 1tl1a (1 .)-- dx=--- --18
o l1a-x cosh 1t8 2

fAa f0a-x (l1a_X)-iF. (X )-iF. fi (l1a)-ZiF. r(lj2-i8)-- -- - dx=-l1a-
o X 2a 2a 2 4a r(l- i8)

we obtain G[ and GIl in terms of stress intensity factors as

(20)

(21)

(22)

where

a± = 1 [± (v+v)(A
Z
-Diz)+2AD1j Dzz +2AD 12 i(v-v) sgn(WzdJ

8A coshz 1t8 2D jl

1
c± = [D IZ (2A +(v+ v) +Ai(v- v) sgn(WZI )]

8A coshz 1t8

The complex constant v appears in the above coefficients as

(23)

where

d = (A+D IZ sgn(WZI)z) cosh 1t8 r(lj2-i8)

fi(l- 2i8) r(l- i8)

in which, r is the gamma function. It is clearly seen that the finite extension strain energy
release rates G[ and GIl do not converge when l1a approaches zero due to the presence of
the oscillation term (l1aj4a)~ZiF.. This oscillation term is also present in the strain energy
release rates for interfacial cracks in isotropic media (Sun and Jih, 1987). Nevertheless, the
total ~train energy release rate is still well defined.

4. MODE MIXITY

Due to the oscillatory singularity in the near tip stress field, K j and KII for interfacial
racks cannot be uniquely associated with Mode I and Mode II fracture as defined in
homogeneous media. Nevertheless, K[ and K II still represent two different modes of fracture
action, and their respective amounts of participation in fracture can be reflected by the
mode mixity angle defined by
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(24)

If we adopt a definition of stress intensity factor that includes the phase effect of crack
length such as Hutchinson's (1987), the mode mixity I/JK would be ambiguous due to the
nature of oscillatory singularity of the interfacial crack. In order to define the mixed mode
fracture toughness unambiguously, Rice (1988) suggested a definition of stress intensity
factor of the classical type by introducing the use of a specific distance f from the crack tip
to define K. The individual stress intensity factors K, and K ll based on location f = 2a can
be used to define the mixed mode fracture condition as

(25)

As shown in eqn (2), I/JK obtained at one f can be converted to those at a different f.
Hence, there are no restrictions on the selection of f. The above fracture criterion was
suggested by Hutchinson (1990) for the case e = 0 of interfacial cracks in isotropic media.
When e = 0, G, and Gll are well defined and the mode mixity I/J can also be fully expressed
in terms of the strain energy release rates as

-I (Gll
)I/JG = tan ~ (26)

However, the mode mixity cannot be expressed for interfacial cracks in terms of the
ratio of Gll and G, due to their Aa-dependency and their non-convergent nature (as Aa->
0). In view of the foregoing, we replaced K, and Kll in (20) and (21) by total strain energy
release rate G through manipulation of (20)-(22). Finally, we can rewrite the finite extension
strain energy release rates G[ and Gll in terms of G and mode mixity I/JKas

~ 1 IdlG [ (Aa). . ( Aa)JG, = 2G+ 2A cos(a-cjJ)cos 2dn 4a +sm(a-cjJ)sm 2dn 4a

~ 1 Idl G [ (Aa) . ( Aa)JGll =2G - 2A cos(a-cjJ)cos 2dn 4a +sin(a-cjJ) sm 2dn 4a

where Idl and a are related to the complex constant din (23) as

and

(27)

(28)

(29)

We introduce Aa-independent quantities G, and Gil by extracting the amplitudes of
the oscillation terms in eqns (27) and (28), respectively. Thus,

- 1 IdlG ',J, 1
Gj = 2G + 2A [cos(a-cjJ)+ sm(a-'f')

= ~G+ }2ld lG cos (a-cjJ-~)
2 2A 4

(30)
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_ 1 IdlG
GIl = "2 G - 2A [cos(a-cjJ)+sin(a-cjJ)]

= ~G- ~~IG cos (a-cjJ-~) (31)

Solving eqns (27) and (28) for (a - cjJ) and substituting it into (30) and (31), we obtain GJ

and Gn in terms of G) and Gn as

- 1 IdlG ( .1.a n -1 ( G)-GIl))
G) = "2 G+ .j2A cos 2eln 4a - 4 +cos A IdlG

_ 1 IdlG ( .1.a n _I ( G)-Gn))
GIl = "2 G- .j2A cos 2eln 4a - 4 +cos A IdlG

(32)

(33)

Although the expressions of GJ and GIl in (32) and (33) contain the oscillation term
In(.1.a/4a), it should be cancelled out by the term involving G) and Gn . Thus, G1 and Gn are
non-oscillatory and well defined as .1.a --+ O. Using the relations derived in eqns (32) and
(33), GJ and Gn are obtained through the calculation of G) and Gn by the crack closure
method. Meanwhile, the mode mixity can also be represented unambiguously by

_I (Gn )l/Je = tan G) (34)

Following the definition of l/Je in (34) and using eqns (30)-(31), the mode mixity quantities
l/JK and l/Je are related by

.j2A -21dl cos(a-cjJ-n/4)
tan l/Je = -'--::=----------

.j2A+2Idl cos(a-cjJ-n/4)
(35)

Note that, in (35), cjJ is a function of l/JK' Hence, the fracture criterion (25) can be expressed
alternatively in terms of G and l/Je, or G) and GIl'

Beuth (1995) also proposed non-oscillatory strain energy release rates for the purpose
of mode separation for interfacial cracks in orthotropic media. In his formulation, the
individual strain energy release rates G1 and GIl were expressed as

(36)

(37)

where

The stress intensity factor Kfollows Hutchinson's definition (1987) which involves the
logarithm of crack length, h is a normalized constant for the crack extension length .1.a,
and H lI is a material constant. It is clearly seen that the $1 does not involve oscillation,
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while <1>2 has the oscillation term (!1aI2h) 2;£. In order to isolate the oscillatory behavior of
the energy release quantities, Beuth (1995) introduced <1>; by excluding the oscillation term
(!1aI2h)2;£ in <1>2 as

H [(Kk£)2 r(~+ie)J<1>; = 11 Re 2__
2ficosh ne 1+2ie r(1 + ie)

The non-oscillatory strain energy release rates G] and G2 introduced by Beuth are expressed
as

(38)

(39)

The major difference between the non-oscillatory strain energy release rates G] and GIl' and
G] and G2 is that the latter simply exclude the oscillation term while the former extracts the
amplitude of the oscillation term.

It was suggested by Sun and Qian (1997) that the near-tip oscillation zone ro be
expressed in terms of mode mixity such as t/JK for interfacial cracks in isotropic media. The
size of the oscillation zone can be used as an estimate of the actual contact zone and as an
evaluation of the validity of loading by small scale contact zone concept. Letting near-tip
crack loading displacements in (16) vanish, we have

(40)

and

(41)

The value of ro/2a can be used to check whether the small scale contact concept can be
applied. To insure that the crack tip state is K-dominated, Rice (1988) suggested that
ro/2a :::;; 0.01, or equivalently,

(42)

Therefore, the limitation of loading can be evaluated through mode mixity angle t/J K'

5. CALCULATION OF STRESS INTENSITY FACTORS USING FINITE ELEMENT
ANALYSIS

For interfacial cracks in isotropic media, analytical methods for solving the stress
intensity factors for interfacial crack problems are limited to a few special cases due to the
inherent mathematical difficulties. Numerical methods such as the finite element method
are needed to calculate the stress intensity factors for interfacial cracks in bodies of finite
dimensions under general loading conditions. For interfacial cracks in isotropic media, Lin
and Mar (1976) employed a special singular bi-material crack element to model the crack
tip region. This crack element was derived based on the interfacial crack tip stress field and
the hybrid formulation. Matos et al. (1989) proposed a method for calculating stress
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intensity factors based on the evaluation of the J-integral. Individual stress intensity factors
are obtained from further calculation of J perturbed by small increments of stress intensity
factors.

Sun and Qian (1997) have recently proposed two new methods to compute stress
intensity factors; one is called the energy method which calculates the finite extension strain
energy release rates Gr and Gn by the modified crack closure method (Rybicki and Kanninen,
1977) using finite element analysis. With the established relations between Gi and K i

(i = I, II), the stress intensity factors are obtained. The other is the displacement ratio
method which evaluates the ratio of stress intensity factors based on the crack surface
displacement ratio. The additional equation needed to determine the stress intensity factors
is provided by the total strain energy release rate.

The quadratic relations between Gi and K i in eqns (20) and (21) indicate that for one
set of Gi we may have two sets of solution for K i • However, there is only one set of roots
for K i which corresponds to the displacement field. We may utilize the relative crack surface
displacements obtained from the finite element analysis to select the correct K i • Specifically,
the correct values of K, and Kn obtained from G, and Gn, after substitution into eqns (15)
and (16), should yield relative crack tip opening displacements that agree with the finite
element result.

It may appear that the linear relations in eqns (15) and (16) may be used to calculate
K, and Ku based on the relative crack surface displacements. However, it is found that the
stress intensity factors extracted in this manner based on the finite element result usually
are not accurate.

Using eqns (15) and (16), the ratio of Kn/K, can be expressed in terms of crack surface
displacement ratio liU2/liu" and the stress intensity factors K, and Kn can be obtained using
this ratio (K,,/K,) together with eqn (22) where the total strain energy release rate can be
obtained accurately from the crack closure method. It is easy to see that the displacement
ratio method is more convenient to perform than the energy method.

6. NUMERICAL EXAMPLES

The analytical solution of stress intensity factors for an infinite bimaterial medium of
orthotropic solids containing an interfacial crack of length 2a subjected to uniform remote
tensile O'f2 and shear loading O'f2 was originally derived by Hwu (1993b) in matrix form.
From Hwu's solution, the stress intensity factors can be expressed explicitly as

C [2eD 22
00 (2eD 12 ) 00 ]Kn = v na -A-sgn(W21)0'22 + 1+ -A- sgn(W2d 0'12

(43)

(44)

Appropriate uniform stresses O'W and O'W (see Fig. 2) are required to satisfy for
displacement continuity along the interface, i.e.,

(45)

in which superscripts 1 and 2 denote the upper and lower materials, respectively. This
condition can be expressed in terms of stress components and the applied stresses O'f2 and
O'f2 as

S
A(I) (1) SA(2) (2) (SA(2) SA(l)) 00 + (SA(2) SA(l)) 00

11110'11 - 11110'11 = 1122- 11220'22 1121- 11120'12 (46)

where Sijkl are reduced material compliancies which are related to material compliancies

Sijkl as
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Fig. 2. Infinite bimaterial medium containing an interfacial crack of length of 2a subject to remote

tensile loading.

The problem studied by Hwu (1993b) is taken to verify the present finite element
analysis procedure. Only uniform remote tensile loading as shown in Fig. 2 is considered.
The size of the bimaterial medium is taken to be 100 m x 100 m with a 2 m interfacial crack.
The tensile loading 0'22 is assumed to be 1 N/m2

. Two orthorhombic crystalline materials
are selected: Argonite for the upper material and Topaz for the lower material. Various
material orientations [Od02l are considered. The elastic constants of these two materials are
listed in Table 1.

The present finite element calculations were carried out with the ABAQUS code. The
eight-node isoparametric element was used for the analysis. The modified crack-closure
method, based on the nodal forces and displacements, was used to compute the finite
extension strain energy release rates G1 and Gu .

The accuracy of stress intensity factors calculated with the energy method depends on
the accuracy of strain energy release rate calculation using the modified crack closure
method. Sun and Jih (1987) performed a convergence test for G1 and GIl with various crack
extensions Aa/a for an interfacial crack between two isotropic solids. They showed that in
the range of Aa/a from 2.5.10- 3 to 5.10-2

, the calculated strain energy release rates by the
modified crack closure method agreed well with the analytical solutions. However, it is
obvious that the choice of Aa/a cannot be totally arbitrary. If very small values of Aa/a are
used, the oscillatory behavior of the near-tip field may lead to unreliable stresses and
displacement in the finite element analysis. Moreover, small values of Aa/a require extra
meshing effort and a large number of elements. On the other hand, large values of Aa/a
will invalidate the neartip relations based on which the relations between the finite extension
strain energy release rates and the stress intensity factors are derived.

Table 1. Elastic constants (1011 N/m2) for two orthorhombic crystalline materials

No.

I
2

1.5958 0.3663 0.0197 0.8697 0.1591 0.8503 0.4132 0.2564 0.4274
2.8136 1.2582 0.8464 3.4895 0.8815 2.9452 1.0811 1.3298 1.3089

Material No. I: Argonite; Material No.2: Topaz.
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In view of the foregoing, the ratio !1a/a was chosen to be 0.01 in calculating G1 and
Gn. The calculated finite extension strain energy release rates and calculated stress intensity
factors from the energy method as well as those from the analytical solutions (43) and (44)
are listed in Tables 2 and 3. From Table 2, it is found that the discrepancies between the
two solutions are well below 1% except for the [-45/45] case, for which the discrepancies
are slightly greater. Comparison of the stress intensity factors is given in Table 3. It is noted
that the errors in stress intensity factors for the [-45/45] case are below 1% despite slightly
larger errors in strain energy release rates.

The calculation of stress intensity factors based on the displacement ratio method is
also performed for the above problem. Note that, along the crack plane and near the crack
tip, the finite element mesh was kept uniform with the element size I% of the half crack

Table 2. Strain energy release rates for a 100 m x 100 m bimaterial plane strain medium subject to remote tensile
loading a'f2 = I N/m2 by the energy method

G, GIl G

Exact F.E.M. Error Exact F.E.M. Error Error
[0110,] eqn (27) present (%) eqn (28) present (%) (%)

[0/0] 1.9727E-II 1.970 IE-I I 0.13 1.8772E-12 1.8900E-12 0.68 0.06
[0/90] 2.0229E-II 2.020IE-11 0.14 1.9385E-12 1.9519E-12 0.69 0.07
[90/0] 1.5744E-II 1.5717E-II 0.17 1.5081E-12 1.513IE-12 0.33 0.12
[0/-45] 2.0188E-II 2.0085E-II 0.51 1.8318E-12 1.8466E-12 0.81 0.40
[-45/45] 1.6413E-II 1.6619E-II 1.61 2.2674E-12 2.3029E-12 2.01 1.62

Table 3. Stress intensity factors for a 100 m x 100 m bimaterial plane strain medium subject to remote tensile
loading a'f2 by the energy method

Kd~a'f2 KII/~a'f2

Exact F.E.M. Error Exact F.E.M. Error
[Od02] eqn (43) energy method (%) eqn (44) energy method (%)

[0/0] I 0.9998 0.02 0.1169 0.1157 1.00
[0/90) I 0.9997 0.03 0.1207 0.1194 1.07
[90/0] I 0.9995 0.05 0.094 0.093 1.06
[0/-45] 1.0015 0.9998 0.17 0.1188 0.1166 1.85
[-45/45) 0.9866 0.9945 0.80 0.1074 0.1076 0.19

Table 4. Relative errors in stress intensity factors by the displacement ratio method

Element no.
[0 1/02) (%) First Second Third Fourth Fifth

[0/0) Error (K,) 0.06 0.03 0.04 0.04 0.04
Error (KII) 8.19 0.31 1.56 1.37 1.58

[0/90] Error (K,) 0.09 0.00 0.02 0.02 0.02
Error (KII) 7.82 0.41 1.61 1.42 1.62

[90/0] Error (Kr) 0.04 0.08 0.08 0.08 0.08
Error (KII) 9.97 1.83 1.53 1.15 1.40

[0/-45) Error (Kr) 0.13 0.22 0.23 0.23 0.23
Error (KII) 5.79 1.35 2.28 1.94 2.05

[-45/45) Error (K,) 0.77 0.80 0.80 0.80 0.80
Error (KII) 13.5 0.33 0.20 0.40 0.22
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size a. Crack surface displacements at various locations are taken to compute the dis
placements ratios. The results are presented in Table 4. It is evident that the stress intensity
factors obtained with this method are in excellent agreement with the analytical solutions
if the nodal displacements are taken at least two elements away from the crack tip.

7. CONCLUSION

Two finite element based methods have been shown to be accurate for calculating
stress intensity factors for interfacial cracks between two orthotropic solids. The first
method involves the evaluation of strain energy release rates Gi associated with a finite
crack extension using the modified crack closure method. From the explicit near-tip stress
and displacement fields, the relations between the finite extension strain energy release rates
and stress intensity factors are derived from which stress intensity factors are determined.
The second method utilizes the relation between the crack surface displacement ratio and
the ratio of stress intensity factors to determine the stress intensity factors. It was shown
through numerical examples that both methods are quite efficient and accurate. The dis
placement ratio method, perhaps, is more convenient to use in conjunction with the finite
element analysis. The non-oscillatory quantities G[ and GIl derived from G] and GIl can be
used to give an alternative expression for the interfacial crack mode mixity. Thus, the
fracture criterion can also be given in terms of the total strain energy release rate G and the
ratio GII/G] without calculating the stress intensity factors.
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APPENDIX

A and c" are related to the following eigenvalue problem given by Hwu (1993a):

(M* +e2inoM*)A = 0

where M* is the bimaterial matrix defined as

M* = D-1W

D = L1' +L,'

W = SIL, -S2L2

(AI)

(A2)

where Si and L i are Barnett-Lothe's tensors (Barnett and Lothe 1973), which are composed of the elastic constants
of material i (i = 1,2). Here, the subscripts I and 2 denote upper and lower materials, respectively. The explicit
solution for the eigenvalue Dis given by Ting (1986) as

I
Do = -:1 +ic" IX = 1,2,3,

(A3)

where tr stands for the trace of a matrix; e is called the oscillation index. Matrix A is composed of three different
eigenvectors, i.e..

(A4)

The eigenvectors Ai are determined from the eigenvalue problem given in (AI) up to an arbitrary complex constant
and were normalized by Hwu (1993a) as

,FDA = I (AS)


